
Institute of Architecture of Application Systems
University of Stuttgart, Stuttgart, Germany

{wurster, breitenbuecher, kepes, leymann, yussupov}@informatik.uni-stuttgart.de

Modeling and Automated Deployment
of Serverless Applications using TOSCA

Michael Wurster, Uwe Breitenbücher, Kálmán Képes,
Frank Leymann, and Vladimir Yussupov

© 2018 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Wurster2018_ServerlessTOSCA,
author    = {Michael Wurster, Uwe Breitenb\"{u}cher, K\'{a}lm\'{a}n K\'{e}pes, 

Frank Leymann, and Vladimir Yussupov},
title     = {{Modeling and Automated Deployment of Serverless Applications

using TOSCA}},
booktitle = {Proceedings of the IEEE 11th International Conference on

Service-Oriented Computing and Applications (SOCA)},
year      = {2018},
pages     = {73---80},
doi = {10.1109/SOCA.2018.00017},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems



Modeling and Automated Deployment
of Serverless Applications using TOSCA

Michael Wurster, Uwe Breitenbücher, Kálmán Képes, Frank Leymann, and Vladimir Yussupov
Institute of Architecture of Application Systems, University of Stuttgart, Germany
{wurster, breitenbuecher, kepes, leymann, yussupov}@informatik.uni-stuttgart.de

Abstract—The serverless computing paradigm brings multiple
benefits to application developers who are interested in consuming
computing resources as services without the need to manage
physical capacities or limits. There are several deployment
technologies and languages available suitable for deploying
applications to a single cloud provider. However, for multi-
cloud application deployments, multiple technologies have to
be used and orchestrated. In addition, the event-driven nature of
serverless computing imposes further requirements on modeling
such application structures in order to automate their deployment.
In this paper, we tackle these issues by introducing an event-driven
deployment modeling approach using the standard Topology
and Orchestration Specification for Cloud Applications (TOSCA)
that fully employs the suggested standard lifecycle to provision
and manage multi-cloud serverless applications. To show the
feasibility of our approach, we extended the existing TOSCA-
based ecosystem OpenTOSCA.

Index Terms—Serverless, Multi-Cloud, Modeling, Automated
Deployment, TOSCA

I. INTRODUCTION

With the advent of the serverless computing paradigm,
cloud application developers can focus more on application’s
business logic leaving the infrastructure-related duties to cloud
providers [1], [2], [3]. The term serverless here stresses the
fact that servers are irrelevant from a developer’s point of
view. This does not mean that servers are no longer needed.
In the serverless computing model, management and scaling
of required computing resources remains the responsibility of
cloud providers [4]. Furthermore, serverless computing relies on
a fine-grained, usage-based cost model where customers never
pay for idle since only the actual amount of resources consumed
by an application is charged. Frequently, the term serverless is
linked with the Function as a Service (FaaS) cloud delivery
model, which fits nicely into the idea of developing applications
without worrying about the underlying infrastructure. The
FaaS model allows developing and deploying custom server-
side logic in the form of ephemeral and stateless functions
employing an event-driven programming model [3]. The main
difference from the Platform as a Service (PaaS) model is that
with PaaS pre-purchased units of capacity are always running,
which is not the case with FaaS. Such functions constitute event-
centric serverless architectures that interact with a variety of
fully managed cloud services, e.g., message queues, databases,
payment, and identity services. Due to the increase use of
serverless architectures, it is often the case that serverless
applications have to be integrated with existing, traditional
application stacks, e. g., deployed on Infrastructure as a

Service (IaaS) offerings hosted in private cloud environments.
For example, since FaaS is well-suited for infrequent but high
workloads [4], [3], one valid use case is the migration of
existing features, falling into this workload category, to event-
driven, short-lived, and stateless functions. Multiple deployment
technologies and cloud providers offer capabilities to deploy
serverless applications. Often, such capabilities are tightly-
coupled with the features, APIs, and other specifics of the
chosen technology. In multi-cloud deployments, this results
in an integration challenge of using multiple providers and
technologies for a single deployment, which is complex, error-
prone, and time-consuming. Furthermore, it is even more
challenging when deployments into private and public cloud
environments have to be combined where traditional and
serverless technologies are exploited. Additional layers, in
terms of deployment automation [5], have to deal with the
problems of proper specification, coordination and orchestration
of different infrastructure stacks and cloud services.

However, to fully benefit from employing serverless archi-
tectures, developers should be able to model the deployment of
such multi-cloud application stacks independent of a specific
technology. In this paper, we tackle this issue by introducing
an approach that allows to model the automated deployment
of multi-cloud serverless applications using the Topology and
Orchestration Specification for Cloud Applications (TOSCA).
As there are currently only partial solutions available, not
working for multi-cloud application stacks or just for specific
cloud providers, we demonstrate a TOSCA-based deployment
modeling approach that is able to combine heterogeneous
deployment technologies. We describe how serverless archi-
tectures can be modeled using the standard TOSCA modeling
constructs to represent event sources, events, and functions.
To support this, we analyze how event-driven behavior of
application components can be expressed with respect to
corresponding events and how deployment operations, required
for configuring such behavior, can be described in TOSCA.
On top of that, we show how to purely utilize the standard
interfaces in order to install, configure, and run serverless
applications. It has been shown that TOSCA is well suited
to integrate heterogeneous technologies [6]. Therefore, being
completely aligned to TOSCA, a standard compliant runtime
is able to provision such modeled applications independent of
the used deployment technologies. We validate the practical
feasibility of our approach by showing how this can be realized
using the OpenTOSCA ecosystem.



The remainder of this paper is structured as follows: Sec-
tion II starts with a brief introduction into TOSCA. Section III
and Section IV describe our approach of modeling serverless
applications as well as aspects of automated deployment using
TOSCA. Section V discusses the approach and highlights
additional challenges, whereas Section VI validates our ap-
proach by presenting a prototypical implementation based on
the OpenTOSCA ecosystem. Section VII presents related work,
while Section VIII concludes and discusses future work.

II. TOSCA FUNDAMENTALS

In the following, we briefly cover the fundamentals of
TOSCA [7], [8]. We simplify and skip all TOSCA details that
are not important in our context. TOSCA is an open and vendor-
neutral standard by OASIS that specifies a cloud modeling
language (CML) [9]. TOSCA allows modelers to describe the
structure and behavior of cloud-based services with the focus
on portability and interoperability of the described application
model. Such combination of structure and behavior information
in TOSCA terminology is referred to as a Service Template.
The application’s structure, or its topology, can be represented
as a directed graph with nodes describing components of
the application and edges defining the relationships among
them. In TOSCA terms, a structure of applications is defined
in a form of a Topology Template, which comprises Node
Templates and Relationship Templates as its core building
blocks. Additionally, TOSCA provides a type system that is
intended to specify common semantics and to simplify the
reuse of modeled entities. By using types, modelers are able
to define certain characteristics of nodes and relationships in
corresponding Node Types or Relationship Types. Moreover,
modelers can define interfaces for node and relationship types
that allow provisioning engines to trigger lifecycle operations,
e. g., a create operation that is responsible for installing
the corresponding node or a post_configure_target operation
used to trigger configuration actions required to establish a
relationship. The actual logic performing specified operations is
provided in a form of so-called Implementation Artifacts (IA),
which can be simple Shell scripts or more complex applications
implementing respective operations. Node Type Implementation
or Relationship Type Implementation are then used to assign a
given IA to the respective Node or Relationship Type. It is worth
mentioning that TOSCA allows for one type to have multiple
type implementations. For instance, creating a virtual machine,
i. e., create operation of the lifecycle, might require different
actions depending on the underlying hypervisor. Therefore,
IAs can be specified in different Node Type Implementations
to support handling the same lifecycle operations in different
environments. In addition, there are Deployment Artifacts (DA)
that implement the business functionality of a Node Template
or Node Type, e. g., an online-shop application hosted on
a web server. Moreover, TOSCA introduces constructs to
describe non-functional system requirements in a form of
Policy Types and Policy Templates. Attached to certain entities
of the topology, policies can be utilized to fulfill additional
requirements at different stages of the application’s lifecycle.

WebShop 
(PHP Application)

Database 
(MySQL DB)

Webserver
(Apache)

Linux 
(Ubuntu LTS)

(AWS EC2)

DBMS
(MySQL DBMS)

Linux 
(Ubuntu LTS)

(AWS EC2)

(connectsTo)

(hostedOn) (hostedOn)

(hostedOn)

(hostedOn)

(hostedOn)

(hostedOn)

DA DA

IA connect (…)

IA createVM (…) IA

IAIA runScript (…)

IA deploy (…) IA

Figure 1. TOSCA Topology Template of a LAMP-based application [10].

Finally, the extensible nature of TOSCA allows introducing new
or modifying existing constructs, which makes the modeling
of cloud applications even more flexible.

One example [10] of an application topology relying on
a standard TOSCA modeling approach is depicted in Fig. 1.
The shown topology represents the structure of an e-commerce
PHP application, which is hosted on Apache Web Server. In
addition, a MySQL database is used for storing the application’s
state. All components are hosted on an Ubuntu operating
system using two distinct instances of AWS EC2 in order
to operate the business logic and the database separately.
Components of the depicted application, i. e., Node Templates,
are represented as nodes of the graph. Every component is
related to a certain Node Type, e. g., WebShop Node Template
is of type PHP Application. Relationships among these nodes,
i. e., Relationship Templates, are represented as directed edges,
either of type hostedOn or connectsTo. Deployment Artifacts
representing the application’s business logic and the schema of
the database are attached to the corresponding Node Templates.
In a similar way, Implementation Artifacts are attached to
the corresponding nodes or relationships and are assigned to
respective lifecycle operations. For example, the Linux Node
Template exposes a management operation runScript() to run
arbitrary scripts on the operating system. The operation’s logic
is implemented by a respective IA and is referenced in the
Topology Template. In the same manner, arbitrary management
operations can be modeled using dedicated IAs.

The resulting topology, grouped together with attached arti-
facts and other metadata, represent a complete application ready
for deployment, the so-called Service Template. In addition,
TOSCA provides a packaging and export format to support
the portability of applications. A so-called Cloud Service
Archive (CSAR) groups together all required information
including metafiles describing the contents of the archive.



Amazon
DynamoDB

AWS
Lambda

Amazon API 
Gateway

Amazon S3

Amazon Cognito

Registers and authenticates users 

Hosts static website content

Figure 2. High-level serverless architecture use case [11].

III. MODELING SERVERLESS APPLICATIONS WITH TOSCA

In this section, we show how to use TOSCA standard
constructs to model an automated deployment for serverless
applications. The presented approach covers three important
aspects of serverless application modeling: (i) modeling of
function deployments, (ii) modeling of components that emit
events, and (iii) modeling of an event flow. First of all, we
introduce a motivating scenario that highlights challenging
modeling and deployment aspects and with which we explain
and demonstrate our approach in the following.

A. Motivating Scenario

With serverless computing model, one can fully focus on
the application’s business logic instead of worrying about
managing and operating the underlying infrastructure. There
is no need to worry about deploying or configuring servers
since respective cloud providers do all the required work.
Application developers can create serverless applications by
combining different services provided and fully managed by
a cloud provider. One typical use case for such architectures
is to process traditional request and response workloads, for
example, a web application that utilizes HTTP REST APIs
as depicted in Fig. 2. For the sake of brevity, we chose
Amazon Web Services (AWS) as cloud computing provider.
In this example, a web application is envisioned where the
respective static website content is hosted and served from
AWS S3. Clients access the public URL of an S3 bucket
with a web browser and download the required static website
content, such as HTML, JavaScript, and CSS files, in order
to run the application. For user registration and log in, the
given web application relies on Cognito, an authentication
service from Amazon. Next, through Amazon’s API Gateway,
the application can access arbitrary backend functionality
implemented with AWS Lambda—Amazon’s serverless data
processing service. Using AWS Lambda, teams can develop and
run any application logic as small pieces of code or rather event-
driven functions that can respond to a variety of events and
triggers. There are several event sources available that can be

Event-driven RPC

Index Photo 
Function

S3 Photo 
Bucket

Private cloudAWS cloud

Message 
Queue

Web App

Figure 3. Multi-cloud serverless application use case.

used to trigger such functions. For example, platforms provide
messaging services, e. g., Amazon SQS, that enables processing
of messages using specified functions. Furthermore, there are
storage services, e. g., AWS S3 or Amazon DynamoDB, that
emit events whenever clients interact with these services, for
example, if entities are added, modified, or removed. Lastly,
there are endpoint services, like Amazon’s API Gateway, that
allow turning HTTP client requests into events, or there are
scheduling services to enable the invocation of functions at
regular intervals. In turn, functions in AWS Lambda can use any
managed service utilizing the respective Software Development
Kit (SDK). In such scenario, the advantages of having a
serverless architecture are reduced administrative burdens for
infrastructure components and shortened time to market, since
the platform takes care of it. Software development teams
only have to configure the services together and upload the
respective application code to AWS.

However, there are scenarios where application systems
cannot be purely built serverless. For example, in scenarios with
existing or even legacy applications that are already in place,
which cannot be migrated to serverless due to capacity and time
constraints. In such cases, a valid use case is to utilize serverless
computing in order to extend existing application system with
new features. Since serverless is well-suited for infrequent but
high workloads [4], [3], new features can be implemented as
event-driven, short-lived, and stateless functions using FaaS.
Figure 3 depicts such scenario where a traditional application is
hosted inside a private cloud environment, e. g., an OpenStack
cloud environment, and connects to a message queue hosted
and configured on AWS. On the left hand side of the figure,
a simplified use case scenario is shown. In this scenario, an
S3 bucket hosted on AWS is used to upload and store photos.
Whenever a photo is uploaded to the S3 bucket, an event is
emitted, which, in its turn, triggers a serverless processing
task using AWS Lambda. This processing task, or function,
extracts certain attributes of the photo, such as filename, size,
and external URL, and publishes this information to a message
queue. The traditional application can further process this
information as soon as it gets notified by the queue.



Name: photo-uploads
[…]

(S3 Bucket)

Name: index-photo
[…]

(Node.js Function)

AccessKey: aloE321Aow
SecretAccessKey: *****
[…]

(AWS SQS)

[…]

(OpenStack)

Memory: 8GB

(Ubuntu VM)

Port: 8080
[…]

(Spring Boot App)

Name: photo-updates
[…]

(SQS Queue)

(hostedOn)(connectsTo)

AccessKey: aloE320Aow
SecretAccessKey: *****
[…]

(AWS Lambda)

AccessKey: aloE319Aow
SecretAccessKey: *****
[…]

(AWS S3)

S3 Put Object Event

DA

Existing Modeling ApproachNew Modeling Approach

Figure 4. Motivating Scenario: Multi-cloud application topology combining serverless and traditional application provisioning.

In terms of deploying such a multi-cloud scenario, several
things have to be considered and multiple technologies have
to be used and orchestrated. First of all, the message queue
has to be set up accordingly using the respective AWS API,
whereas one can interact with the API using a command-line
tool, a Software Development Kit (SDK) provided for several
programming languages, or by directly using Amazon’s REST-
ful HTTP API. Afterwards, the on-premise application can be
installed and started in the private OpenStack environment. In
this case, the application can be installed using automation
tools, such as Chef [12], Puppet [13], or Ansible [14]. At this
stage, the on-premise application is able to read messages from
the queue. Thereafter, the S3 bucket has to be configured in
such a way that files can be uploaded, i. e., by using one of
Amazon’s APIs. Next, the AWS Lambda function has to be
setup and the respective function code has to be uploaded,
which is able to push respective messages to the configured
queue. Again, this deployment step can be automated using
AWS APIs or using the Serverless Framework [15]. Finally, the
event trigger for the function has to be declared. In our scenario,
the connection between the S3 bucket and the function is made
by specifying which type of event should trigger the function,
for example, whenever a file has been uploaded to the bucket.

Using TOSCA, we can fully model such a multi-cloud
serverless application independently of a certain deployment
technology. Figure 4 shows the introduced motivating scenario
as an application topology. We specify the application topology
as a directed graph where nodes represent components and
edges represent the relations among them (cf. Section II). On
the right hand side of Fig. 4 we use an existing modeling
approach using TOSCA to model a Java application that
connects to Amazon’s SQS service and is hosted on an Ubuntu
virtual machine, which runs in an OpenStack environment.
Former research and related work have shown the feasibility of
modeling such application deployments [16], [17], [18], [10].
On the left, our modeling approach for serverless application
deployment is depicted, which is explained in detail below.

B. Modeling Function Deployment

By employing a serverless architecture, arbitrary backend
logic can be split up into several logical functions and deployed
onto a FaaS platform. On what basis and granularity the
business logic is split into functions is very much opinionated
and not further discussed in this paper. In our motivating
scenario, we only depict a single function that is hosted on
AWS Lambda, Amazon’s FaaS platform. Since functions are
the deployment units in FaaS, we model a specific function
as a Node Template where the respective function code can
be supplied as a DA (cf. Fig. 4). Specific semantics, e. g.,
expression of configuration settings, can be modeled using a
corresponding Node Type. For example, the actual name of
the function or the required memory settings can be specified
by respective property definitions inside such a Node Type.
Furthermore, functions require an execution environment. They
are running and hosted on a certain FaaS runtime, AWS
Lambda in our example. In TOSCA, respective execution
environments are usually modeled as separate Node Templates
as well as Node Types. Like so, we model a AWS Lambda
node specifying general, platform-specific semantics, e. g.,
authentication properties in order to access the cloud provider’s
API. As a result, functions can be related to these nodes using
the normative TOSCA Relationship Type hostedOn.

C. Modeling Event-Emitting Components

The serverless paradigm exploits an event-driven program-
ming model. Thus, there are cloud services that act as event
sources in order to trigger functions running in FaaS (cf. Sec-
tion III-A). Such services, e. g., Amazon’s S3 object storage
or SQS queueing service, are not intended to be installed.
However, they most likely require proper configuration in order
to be used. For example, in case of AWS S3 it is necessary to
create and configure the specified bucket accordingly. In case
of Amazon SQS, before a function or external application can
use the queue, it has to be set up correctly. Therefore, similar
to how we model an execution environment for a function, we



create

Name: photo-uploads
[…]

(S3 Bucket)

post_configure_target

Type: PUT

configure

AccessKey: aloE320Aow
SecretAccessKey: *****

(AWS Lambda)

create

Name: index-photo
[…]

(Node.js Function)

(S3 Event)

configure

AccessKey: aloE319Aow
SecretAccessKey: *****

(AWS S3)

configure

AccessKey: aloE321Aow
SecretAccessKey: *****

(AWS SQS)

createVM

[…]

(OpenStack)

runScript

Memory: 8GB

(Ubuntu VM)

create

Port: 8080
[…]

(Spring Boot App)

create

Name: photo-updates
[…]

(SQS Queue)

(hostedOn)(connectsTo)

Figure 5. Full Topology Template utilizing and exposing standard lifecycle operations for the serverless application deployment.

express the semantics of a specific cloud service in a dedicated
Node Type that provides all required information. Besides that,
similar to functions, we express a specific configuration for a
cloud service also as Node Template, e. g., a configuration for
certain S3 buckets or SQS queues. Once the Node Templates are
specified for an application deployment, the connection between
a cloud service and the specific configuration is expressed using
the normative TOSCA Relationship Type hostedOn.

D. Modeling Events and Event Flow

As mentioned previously, cloud services act as event sources
on which other components can react on. Taking the mo-
tivating scenario as an example, we have a function that
gets triggered whenever something happens with a certain
AWS S3 bucket. To express this semantic between cloud
services and functions, a special relation, or rather a kind
of connection, is required. Therefore, we utilize the normative
TOSCA Relationship Type connectsTo in order to specify
such event connection. As there are different types of events,
one can specify different Relationship Types that are derived
from the normative type connectsTo. Examples include publish-
subscribe events, e. g., when an object has been added to an
object storage service or if a new entry has been added to a
database table, or events reflecting HTTP requests and HTTP
responses, e. g., when clients access a RESTful API that is
implemented by an API Gateway service. A certain event
flow is then modeled as a Relationship Template of such type
between a corresponding cloud service configuration and a
function. Furthermore, modeling restrictions can be expressed
using the Relationship Type fields valid_source_types and
valid_target_types such that only certain types can be used
between nodes. As Relationship Types can define properties,
we can use them to specify certain properties on these event

types in order to configure specifically what kind of event will
trigger a function. For example, in our AWS S3 scenario we
defined a property Type on the event type S3 Event being able
to specify that only PUT activities on the S3 bucket should
trigger the function. Furthermore, TOSCA defines several
normative operations that a Relationship Type may implement,
such as post_configure_source or post_configure_target. These
operations can be implemented by Implementation Artifacts in
order to wire services with respective functions.

E. Modeling Limitations

In the serverless domain, there are several use cases that deal
with events and functions. For example, one or more events
trigger one function or one event triggers multiple functions
executed in sequence or in parallel. Furthermore, the result
of a function could trigger another function or even more
complex, an event triggers a function and depending on the
result different branches with different functions are triggered.
In other words, ways are required to specify a workflow [19]
based on functions. AWS, for example, provides “step function”
primitives in order to specify a basic workflow [20]. Such
workflows involve events and functions, whereas the interaction
as well as how information can be passed between functions
are modeled using a function graph.

Our presented approach does not support the ability to
chain functions. Currently we focus only on the deployment of
serverless applications including the configuration and wiring
of certain cloud services with functions, based on one or more
events. Furthermore, our focus of this work is more on the
modeling of application deployments that exploit the serverless
paradigm together with traditional application deployments.
However, our approach provides a good basis for chained
events, forming the fundamentals for further research.



Name: photo-uploads
[…]

(S3 Bucket)

…

Type: PUT

(S3 Event)

Name: index-photo
[…]

(Node.js Function)

…

…

Figure 6. Alternative modeling approach for events and event flows.

IV. AUTOMATED DEPLOYMENT

In terms of automating the deployment, our approach follows
TOSCA’s guideline to employ the recommended standard
lifecycle, as suggested by the specification documentation [21],
[8]. By following this recommendation, a TOSCA-compliant
runtime can execute directly the resulting deployment model.
Figure 5 shows the full Topology Template utilizing and
exposing standard lifecycle operations for the serverless appli-
cation deployment. TOSCA defines five normative operations a
Node Type may have: create, configure, start, stop, and delete.
Furthermore, TOSCA defines several normative operations
(configure interface) on Relationship Types. Respective IAs
may implement post_configure_source or post_configure_target
operations in order to trigger certain actions. These operations
are finally implemented by either Node Type Implementations
or Relationship Type Implementations. For the sake of brevity,
we only show one operation per node. For example, the
implementation of the create operation on the Node.js Function
node will setup the function metadata and upload the function
code utilizing the cloud providers’ programming interfaces.
Following the standard lifecycle of TOSCA, a compliant
runtime executes the operations in the following order: (1)
configure “AWS S3”, (2) create “S3 Bucket”, (3) configure
“AWS Lambda”, (4) create “Node.js Function”, and finally (5)
configure “S3 Event” using the post_configure_target operation.
Thus, using standard TOSCA constructs, the entire application
can be provisioned automatically after modeling.

However, for the traditional part we still depict the notion
that custom Management Operations were specified, e. g., as
shown for the Ubuntu virtual machine as well as the OpenStack
Node Type on the right hand side of the figure. The automated
deployment can be realized, for example, by generating a
deployment workflow fully automated. Breitenbücher et al. [10]
presented an approach that is capable of deriving respective
deployment steps by following the lifecycle and deployment
order concept explained above. Thus, the deployment model
is generated by the runtime itself. Another option is that the
actual deployment steps are modeled imperatively by creating
custom workflows that are executed during runtime [22]. For
our example, we assume that an underlying TOSCA runtime is
aware of how to deal with both, Ubuntu virtual machines and
OpenStack execution environments, or can be easily extended
in order to add such type awareness later onto the system.

V. LIMITATIONS AND DISCUSSION

In this section we discuss an alternative modeling approach
for serverless applications, challenges with large application
topologies in this context, and how to deal with event flows
between different cloud execution environments.

A. Alternative Serverless Modeling Approach

In Fig. 6 we show an alternative approach how to model the
serverless parts of an application deployment. In the alternative
approach, respective events can be modeled similarly to how
function deployments and components that emit events are
represented, i. e., as Node Templates and Node Types. However,
choosing the approach where events and the respective event
flow are also modeled as nodes would unnecessarily clutter
the application structure with elements that are redundant to
express the same semantics. Especially in a graphical TOSCA
modeling environment, such as Eclipse Winery [23], which
allows the ability to create an application topology graphically,
this approach will result in an unnecessarily overloaded user
interface. Further, Moody [24], [25] also defines in his work
about physics of visual notations that each visual symbol should
have a single meaning in order to avoid symbol overload.
Therefore, our assumption is that symbol overload is avoided
by using edges as visual representation for event flows, which
is similar to the semantics of connections and dependencies.

B. Challenges with Large Application Topologies

In aforementioned simplified use case example, only a
deployment of one function is depicted. However, in real
world scenarios more complex application deployments have
to be modeled. With complex architectures the number of
functions might be counted in hundreds. One possible solution
is to introduce another level of abstraction, i. e., by separating
logically related parts into different interconnected deployment
models, or so-called Service Templates. A TOSCA runtime is
then able to orchestrate these split parts. However, modeling
of cross-dependencies among these parts needs to be further
investigated. For example, additional constructs are required
to model the event flow if one part of the application topology
specifies a message queue and another part models a function
that has to be triggered once a message is pushed to this queue.
Further research can show how to model the configuration
of cross-functional concerns, e. g., general DNS or special
networking settings that are shared between application parts.

C. Multi-Cloud Event Flows

Another challenge that has not been addressed in this work is
the modeling of event flows and the exchange of events between
different serverless execution environments. For example, an
AWS S3 event could trigger a function or serverless processing
task on a privately hosted Apache OpenWhisk environment. In
such a scenario, additional middleware or software components
are required. Further research can derive the required software
stacks implicitly from the deployment model in order to
establish a connection between certain cloud provider services.



VI. PROTOTYPE AND APPLICATION

To show the feasibility of our approach, we used and
extended the existing TOSCA-based ecosystem OpenTOSCA.
Thereby, we used the modeling tool Winery1 in order to
model the depicted example scenario and develop the required
Node Types. Winery [23] is able to create the required
modeling types according to the initial XML-based version
of TOSCA [7], such as Node Types, Relationship Types,
Deployment Artifacts, and Implementation Artifacts. Further,
Winery comes with a topology modeling user interface in order
to model a Service Template graphically based on created
type definitions. The final application topology can then be
exported as a CSAR. As TOSCA-compliant runtime, we used
the OpenTOSCA Container2, an open-source runtime to execute
arbitrary TOSCA-based application deployments [26].

However, several extensions were required in order to fully
support the depicted use case scenario, while all extensions
have been merged into the stable branch of the individual
repositories. Since Winery only supported the XML-based
version of TOSCA, an extension was required so that interface
and operation definitions on Relationship Types could be
modeled according to TOSCA’s Simple Profile [8], the latest
YAML-based specification of the standard. We required this
extension to define the depicted configure interface (cf. Fig. 5).
With this addition, we were able to model the scenario used
as example in the course of this paper. A similar extension
was required for the OpenTOSCA Container to interpret the
configure interface definitions correctly. The runtime was only
aware of the standard lifecycle described by the older standard.
Since the OpenTOSCA Container is a declarative runtime, it
contains a component that derives the required deployment
steps from a given application topology. This component
is called Plan Builder [27], [10] and is able to derive and
create a suitable BPEL [28] workflow, or so-called Build and
Termination Plans, to execute and automate the deployment.
Therefore, the extensions were primarily made in the Plan
Builder component. With these additions, the Plan Builder is
able to create a suitable workflow based on the specification
of TOSCA’s standard lifecycle of TOSCA (cf. Section IV).

Afterwards, we developed the respective IAs in order to
implement the standard lifecycle interfaces and required opera-
tions (cf. Fig. 5). Using OpenTOSCA, these Implementation
Artifacts are invoked using a component called Management
Bus [29], [6]. OpenTOSCA supports several artifact types.
The Management Bus provides an unified interface in order
to invoke different kinds of implementations. For example,
it is supported that IAs are implemented using plain Shell
scripts, as web services, or even as Ansible Playbooks. As a
result, the Build Plan generated by the Plan Builder specifies
the order of operations to provision the application. During
provisioning, or workflow execution, the operations are invoked
by the Management Bus depending on the respective type.

1Eclipse Winery: https://github.com/eclipse/winery
2OpenTOSCA Container: https://github.com/OpenTOSCA/container

VII. RELATED WORK

To the best of our knowledge, no published work suggest
approaches to model event-driven serverless application deploy-
ments into multi-cloud environments using TOSCA. However,
in the context of service-oriented architectures (SOA), Belli
and Linschulte [30], [31] introduce an event-driven modeling
approach for modeling behavior of web services for testing in
real-time. Authors do not model in the context of automated
application deployment, but propose a similar approach that
relies on a directed graph, which uses nodes representing
events and edges representing the flow of events. Laliwala
and Chaudhary [32] present an event-driven service-oriented
architecture (EDSOA) focused on modeling and automation
of event-driven process chains. Authors use event calculus,
a formal language for description of local events and time
periods, to model event-driven business processes.

Multiple tools exist to support developers with “modeling
for the cloud”. Numerous existing deployment automation
techniques and standards are based on the notion of deployment
models [9], e. g., declarative or imperative deployment mod-
els [10]. The former describe deployment steps in a procedural
manner and can be expressed, e. g., in the form of Shell scripts
or Ansible Playbooks [14]. Declarative deployment models,
in contrast, such as Chef [12] or Puppet [13], describe the
desired result and a runtime drives the necessary deployment
logic. Provider-specific modeling tools, such as AWS Cloud-
Formation [33], focuses solely on their own platform. As a
result, additional tooling is required for the coordination and
deployment into multi-cloud environments. The Serverless
Framework [15] provides the ability to deploy serverless
applications to multiple cloud providers. It allows developers to
specify platform-specific descriptions of functions and events.
Once developers have decided on a platform, it is not intended
to be changed any more. The resulting deployment model can
only be used to deploy into a single cloud. Terraform [34], by
HashiCorp, allows developers to deploy infrastructure resources,
including multi-cloud provisioning scenarios, by specifying
configuration files that are transformed into execution plans.
Despite the focus on infrastructure-level resources, specification
of serverless functions, e. g., AWS Lambda, is also possible.
However, specification of event-driven aspects for serverless
deployments is provider-specific.

None of the described methods fully supports modeling of
multi-cloud serverless applications independently of certain
deployment technologies. Moreover, deploying such architec-
tures to hybrid clouds is non-trivial and has to be supported.
TOSCA is an open, provider-agnostic standard that can be used
to model and deploy cloud native applications [16] as well
as complex application stacks combining multiple different
technologies, execution runtimes, and cloud providers [17],
[18]. In addition, TOSCA allows to model deployments of
applications imperatively as well as declaratively [10]. Thus,
the resulting topology models are flexible, portable and can
easily be interchanged, e. g., to combine various technology
stacks with different cloud provider offerings.

https://github.com/OpenTOSCA/container
https://github.com/eclipse/winery


VIII. CONCLUSION AND FUTURE WORK

In this work, we introduced an event-driven deployment
modeling approach using TOSCA. The use of standard TOSCA
modeling constructs to model the deployment of (i) functions,
(ii) components that emit events, and (iii) events as well as event
flows were presented and prototypically evaluated in the course
of this paper. We showed how our approach can be used for
multi-cloud application deployments where traditional software
components—running in private cloud environments—can be
extended using the serverless computing paradigm. Being fully
compliant to TOSCA’s standard lifecycle, we showed that a
TOSCA-compliant runtime can automatically execute such
modeled application deployments.

As future work, we aim to tackle the challenge of modeling
multi-cloud event flows where events can be exchanged between
different cloud environments. Further, we tackle the challenge
to model more complex serverless application topologies
where logical parts can be split up while considering shared
configuration settings and cross-dependencies. Lastly, we aim
to work on a full end to end deployment of certain serverless
computing platforms that are modeled in topologies, such that
Apache OpenWhisk is automatically deployed.

ACKNOWLEDGMENT

This work is partially funded by the BMWi projects
SePiA.Pro (01MD16013F), SmartOrchestra (01MD16001F),
and IC4F (01MA17008G).

REFERENCES

[1] K. Fromm. (2012) Why The Future Of Software And Apps Is Serverless.
[Online]. Available: https://readwrite.com/2012/10/15/why-the-future-of-
software-and-apps-is-serverless

[2] M. Roberts. (2016) Serverless Architectures. [Online]. Available:
http://martinfowler.com/articles/serverless.html

[3] Cloud Native Computing Foundation. (2018) CNCF Serverless
Whitepaper v1.0. [Online]. Available: https://github.com/cncf/wg-
serverless/tree/master/whitepapers/serverless-overview

[4] I. Baldini et al., “Serverless Computing: Current Trends and Open
Problems,” in Research Advances in Cloud Computing. Springer
Singapore, 2017, pp. 1–20.

[5] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and
Systems (USITS 2003). USENIX, Jun. 2003.

[6] J. Wettinger et al., “Unified Invocation of Scripts and Services for
Provisioning, Deployment, and Management of Cloud Applications Based
on TOSCA,” in Proceedings of the 4th International Conference on Cloud
Computing and Services Science (CLOSER 2014). SciTePress, Apr.
2014, pp. 559–568.

[7] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

[8] ——, TOSCA Simple Profile in YAML Version 1.1, Organization for the
Advancement of Structured Information Standards (OASIS), 2018.

[9] A. Bergmayr et al., “A Systematic Review of Cloud Modeling Languages,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–38, Feb. 2018.

[10] U. Breitenbücher et al., “Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA,” in International Conference
on Cloud Engineering (IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[11] Amazon Web Services, Inc. (2018) Aws serverless web application
workshop architecture. [Online]. Available: https://aws.amazon.com/de/
serverless/build-a-web-app

[12] Opscode, Inc. (2018) Chef Official Site. [Online]. Available:
http://www.opscode.com/chef

[13] Puppet Labs. (2018) Puppet Official Site. [Online]. Available:
https://jujucharms.com

[14] Red Hat, Inc. (2018) Ansible Official Site. [Online]. Available:
https://www.ansible.com

[15] Serverless, Inc. (2018) Serverless Framework. [Online]. Available:
https://serverless.com/framework

[16] M. Wurster, U. Breitenbücher, M. Falkenthal, and F. Leymann, “Develop-
ing, Deploying, and Operating Twelve-Factor Applications with TOSCA,”
in In Proceedings of the 19th International Conference on Information
Integration and Web-based Applications & Services, Salzburg, Austria,
December 4-6, 2017. ACM, Dec. 2017, pp. 519–525.

[17] A. C. Franco da Silva et al., “Internet of Things Out of the Box:
Using TOSCA for Automating the Deployment of IoT Environments,”
in Proceedings of the 7th International Conference on Cloud Computing
and Services Science (CLOSER). SciTePress Digital Library, Jun. 2017,
pp. 358–367.

[18] K. Saatkamp, U. Breitenbücher, F. Leymann, and M. Wurster, “Generic
Driver Injection for Automated IoT Application Deployments,” in Pro-
ceedings of the 19th International Conference on Information Integration
and Web-based Applications & Services; Salzburg, Austria, December
4-6, 2017. ACM, Dec. 2017, pp. 320–329.

[19] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, 2000.

[20] Amazon Web Services, Inc. (2018) AWS Step Functions Official Site.
[Online]. Available: https://aws.amazon.com/de/step-functions

[21] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[22] C. Endres et al., “Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications,” in Proceedings of the
9th International Conference on Pervasive Patterns and Applications
(PATTERNS). Xpert Publishing Services, Feb. 2017, pp. 22–27.

[23] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[24] D. L. Moody, “The Physics of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 756–779,
Nov. 2009.

[25] ——, “The Physics of Notations: A Scientific Approach to Designing
Visual Notations in Software Engineering,” in 2010 ACM/IEEE 32nd

International Conference on Software Engineering, May 2010, pp. 485–
486.

[26] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692–695.

[27] K. Képes, U. Breitenbücher, M. P. Fischer, F. Leymann, and M. Zimmer-
mann, “Policy-Aware Provisioning Plan Generation for TOSCA-based
Applications,” in Proceedings of the 11th International Conference on
Emerging Security Information, Systems and Technologies (SECURWARE
2017). Xpert Publishing Services, Sep. 2017, pp. 142–149.

[28] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, Organization for the Advancement of Structured Information
Standards (OASIS), 2007.

[29] J. Wettinger, T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann,
“Streamlining Cloud Management Automation by Unifying the Invocation
of Scripts and Services Based on TOSCA,” International Journal of
Organizational and Collective Intelligence (IJOCI), Volume 4, Issue 2,
pp. 45–63, Apr. 2014.

[30] F. Belli and M. Linschulte, “Event-Driven Modeling and Testing of Web
Services,” in 2008 32nd Annual IEEE International Computer Software
and Applications Conference, Jul. 2008.

[31] ——, “Event-Driven Modeling and Testing of Real-Time Web Services,”
Service Oriented Computing and Applications, vol. 4, no. 1, pp. 3–15,
Mar. 2010.

[32] Z. Laliwala and S. Chaudhary, “Event-Driven Service-Oriented Architec-
ture,” in 2008 International Conference on Service Systems and Service
Management, Jun. 2008, pp. 1–6.

[33] Amazon Web Services, Inc. (2018) AWS CloudFormation Official Site.
[Online]. Available: https://aws.amazon.com/de/cloudformation

[34] HashiCorp. (2014) Terraform. [Online]. Available: https://www.terraform.
io

https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless
http://martinfowler.com/articles/serverless.html
https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless
http://www.opscode.com/chef
https://www.terraform.io
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://serverless.com/framework
https://www.terraform.io
https://aws.amazon.com/de/step-functions
https://aws.amazon.com/de/serverless/build-a-web-app
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://aws.amazon.com/de/cloudformation
https://aws.amazon.com/de/serverless/build-a-web-app
https://jujucharms.com
https://www.ansible.com

